Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications.

نویسندگان

  • John W Rasmussen
  • Ezequiel Martinez
  • Panagiota Louka
  • Denise G Wingett
چکیده

IMPORTANCE OF THE FIELD Metal oxide nanoparticles, including zinc oxide, are versatile platforms for biomedical applications and therapeutic intervention. There is an urgent need to develop new classes of anticancer agents, and recent studies demonstrate that ZnO nanomaterials hold considerable promise. AREAS COVERED IN THIS REVIEW This review analyzes the biomedical applications of metal oxide and ZnO nanomaterials under development at the experimental, preclinical and clinical levels. A discussion regarding the advantages, approaches and limitations surrounding the use of metal oxide nanoparticles for cancer applications and drug delivery is presented. The scope of this article is focused on ZnO, and other metal oxide nanomaterial systems, and their proposed mechanisms of cytotoxic action, as well as current approaches to improve their targeting and cytotoxicity against cancer cells. WHAT THE READER WILL GAIN This review aims to give an overview of ZnO nanomaterials in biomedical applications. TAKE HOME MESSAGE Through a better understanding of the mechanisms of action and cellular consequences resulting from nanoparticles interactions with cells, the inherent toxicity and selectivity of ZnO nanoparticles against cancer may be improved further to make them attractive new anticancer agents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of cytotoxicity properties of zinc oxide nanoparticles in spherical and rod shaped on leukemia cells

In this study, we reported a method to associate doxorubicin drug on folic acid functionalized SiO2/ZnO nanoparticles (NPs) in rod and spherical shapes. The clinical usage of the anticancer drug, doxorubicin (DOX), is limited by severe side effects and cell resistance. Targeted drug delivery by binding DOX to nanoparticles could overcome these limitations. The surface functionalization of the Z...

متن کامل

Synergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line

Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...

متن کامل

In-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells

Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...

متن کامل

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

In-Vitro Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells

Cationic polymeric nanoparticles have great potential for developing drug delivery systemswith limited side effects for tumor medication. The goal of this research is investigation ofcationic dextran-spermine polymer (DS) efficacy for improvement of hydrophilic drug deliveryto negatively charged cancerous cells. Capecitabine (as a hydrophilic antineoplastic drug) wasloaded into the magnetic dex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert opinion on drug delivery

دوره 7 9  شماره 

صفحات  -

تاریخ انتشار 2010